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Homogeneous Catalysis by Transition Metal Complexes
IV. The Use of Mixed Catalysts in the Oxidation of Cyclohexene
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The catalyzed oxidation of cyclohexene in benzene solution has been studied at
65°C using a mixture of two different homogeneous metal catalysts.

In order to obtain a reasonable selective formation of equimolecular amounts of
cyclohexene oxide and 2-cyclohexen-1-ol, two types of catalysts have been mixed:
catalysts A are catalysts of autoxidation (transition metal phosphine complexes or
transition metal acetylacetonates), and catalysts B are catalysts of epoxidation
(molybdenum complexes).

The conditions necessary to obtain reasonably good activities and selectivities

are reported and discussed.

INTRODUCTION

Homogeneous metal catalyzed oxidations
of olefins and other hydrocarbons by molec-
ular oxygen have been the subject of a
large number of investigations (1), in which
cyclohexene has been often used as an use-
ful model reactant (2). Moreover, the dis-
covery of the formation of more or less
reversible oxygen adducts of low oxidation
state transition metal complexes has sug-
gested the use of such metal complexes as
catalysts for selective oxidation of olefins
and other hydrocarbons (3-5). In this ap-
proach it has been supposed that the re-
activity of coordinated oxygen could be
similar to that of singlet oxygen or even
of the peroxide ion.

However, it was observed that these
metal complexes only catalyze autoxida-
tion reactions, probably by decomposing
the traces of hydroperoxides always present
in unsaturated hydrocarbons (3-6). The
evidence for direct activation of molecular
oxygen, although claimed by some authors
in a few cases (7), is very scanty. In short,
low oxidation state metal complexes behave
like other catalysts such as soluble metal
salts (I) or metal acetylacetonates (2),
although they often appear to be more
active. Owing to the chain radieal char-
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acter of the autoxidation reaction cata-
lyzed by these metal complexes, selectivity
is poor and many oxidation products are
obtained. Organic hydroperoxides and per-
oxides are probably formed as intermedi-
ates during this kind of oxidation and their
presence has been supported by titration
methods (3).

On the other hand, it has been reported
that soluble metal complexes of V, Mo and
W catalyze the selective epoxidation of
olefins by organic hydroperoxides (8, 9).

The mechanism of this selective epoxida-
tion is at present not understood in detail,
although it appears that the formation of
a metal-peroxide bond (10, 11) or a metal-
hydroperoxide complex (12, 13) is an im-
portant step in the reaction.

ExPERIMENTAL METHODS

Reagents and Metal Complexes

Cyclohexene was purified as described
in our previous paper (3).

Cyclohexene oxide was purified as re-
ported earlier (3); 2-cyclohexen-1-one and
2-cyclohexen-1-0l were isolated and puri-
fied by preparative gle (see below) from
a distilled fraction of an oxidation mixture
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obtained by radical induced oxidation of
cyclohexene.

Metal complexes were prepared accord-
ing to well-known literature methods with
the sole exception of Mo,0;(salen),
(salen = N,N’-ethylene bis-salicilidenimin-
ato). This red-brown complex was ob-
tained by refluxing a benzene solution of
stoichiometric amounts of Mo(CO)s and
salenH under a stream of oxygen. The
initially yellow solution turned deep brown
and after a few hours a red-brown powder
separated, which was recrystallized from
hot ethanol [mp = 220-225°C (dec.)].
Analyses for Mo,0;(C,¢H:,N,0,): caled:
C, 49.8; H, 3.6; N, 7.3; found: C, 48.8; H,
3.8; N, 7.2.

Cyclohexene Oxidation

Weighed amounts of catalysts were
placed in a 100 ml two-necked round bot-
tomed flask equipped with a condenser and
a screwed-in Sovirel serum-type cap. After
evacuating, the flask was filled with O,
then, in O, flow, 10 ml of benzene (Carlo
Erba R. S. spectroscopic grade) and 10 ml
of cyclohexene (98.6 mmoles) were intro-
duced. The solution obtained was 4.93 M
in cyclohexene. The flask was equipped
with a magnetic stirrer and placed in a
thermostated bath at 65 + 2°C; 10 min
later the internal and external pressures
were balanced, the condenser being con-
nected with a 300 ml burette filled with O,
and equipped with a leveling-gauge. The
reaction time varied from 5 hr to about 50
hr, depending on the desired degree of con-
version. The oxidation was followed by
analyzing reaction mixture samples.

Reaction Product Analyses

Samples taken from the reaction flask
with a syringe were directly analyzed by
gle (direct calibration method).

The details of the experimental condi-
tions are reported in our previous paper

(3).
Determination of Active Oxygen

The content of the active oxygen in the
samples taken from the reaction flask with
a syringe was obtained by the well-known
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iodometric method (19). The end point of
the titration was determined with great
accuracy by the electrode polarization
technique (20).

REsuLTS

Background

Hydroperoxides of olefins, formed in the
metal catalyzed radical chain autoxidation
of olefins, are in a concentration which, in
steady conditions, may be high enough to
be considered as potential reagents for
selective oxidation of the olefins them-
selves.

This has already been observed in-
directly in the cyclohexene oxidation cata-
lyzed by MoO,?* and VO?** acetylacetonates
(2) in which the metal complex does not
act only as a radical initiator through a
Haber-Weiss mechanism

OO0H

M"*/M(”“
2

but also catalyzes the direct epoxidation of
olefins

GO O

The high content of cyclohexene oxide in
the reaction products (when compared with
that obtained by thermal or radical autoxi-
dation (14) or by autoxidation catalyzed
by other metal acetylacetonates (2) such
as those of Co%+, Ni**, Cu*) is in agreement
with such a selective oxidation.

An extended series of investigations on
propylene oxidation catalyzed by many
different molybdenum complexes is also in
agreement with a certain selectivity to-
wards the formation of the corresponding
epoxide (15, 16).

Definition of the Two Classes of Catalysts

It therefore appears reasonable to pro-
pose the use of a soluble complex catalyst
prepared by mixing two different kinds of
metal complexes.
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Type A catalyst should catalyze mainly
the following radical reaction:

H 0; OOH
D=0 - v

where R* is a radical formed by metal
catalyzed cyclohexene hydroperoxide de-
composition. It is known that cyclohexene
is an olefin which produces the correspond-
ing hydroperoxide with high selectivity in
the radical catalyzed autoxidation (14).
However, catalyst A should not be too
active in catalyzing the radical decomposi-
tion of the hydroperoxide formed.

Type B catalysts should then catalyze
the following reaction:

Q0+ (o

To sum up, in the presence of a com-
pletely selective mixed catalyst, one could
obtain the following overall reaction:

O U

The choice of type A and type B cata-
lysts has been based on literature data.
Type A catalysts were metal acetyl-
acetonates (2) or low oxidation state metal
complexes (8) which are known to be
effective but not too active catalysts of
cyclohexene radical autoxidation. Type B
catalysts were molybdenyl or vanadyl
soluble complexes which are known to be
the most effective catalysts of selective
epoxidation (8, 9).

The reaction products together with the
selectivity which can be obtained when
only type A or type B complexes are used
as catalysts are reported in Table 1. Our
results are in agreement with what has
been reported so far in the literature
(2, 3).

Type A ecatalysts are more active, but
show lower selectivity (the formation of
2-cyclohexen-1-one may be used as a
measure of the lack of selectivity) than
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type B catalysts which display a higher
selectivity.

Also, when type A catalyst is not too
active, e.g., Pt(PPh;)0,, the concentra-
tion of active oxygen in the reaction mix-
ture (which could be used as a rough
measure of the concentration of the hydro-
peroxide) is high.

Investigation of the Action of Type B
Catalysts in the Catalytic Mizture

We have investigated the action of many
type B catalysts in the presence of a cata-
lyst of type A of relatively low activity
such as Pt(PPh;),0, (3) or Ni(acac), (2)
and the results are given in Table 2.

We have observed that the wuse of
MoO,(acac), produces a much higher selec-
tivity than does the use of Cr(acae); (this
latter catalyst displays a rather high
activity but a very poor selectivity). With
VO (acac), the ratio of cyclohexene oxide
to 2-cyclohexen-1-0l is not too far from
unity, which is expected for a completely
selective reaction, but the formation after
a certain period of a relevant amount of
2-cyclohexen-1-one lowers the total selec-
tivity of the system.

As a matter of fact the activity of the
catalytic mixtures decreases with time so
that we may define a “useful life of the
catalyst” corresponding to the beginning
of the loss of activity. Selectivity does not
decrease with time in the same way bhul
on the contrary an increase in selectivity
is often ohserved (Table 2).

Another important observation is related
to the amount of active oxygen found at
different times in the reaction mixture.
With systems of low selectivity the amount
of active oxygen is higher than with those
of higher selectivity (Table 2).

Once the way to control the reaction
selectivity by the right choice of catalyst
B was defined, we then continued our in-
vestigation using only the more selective
molybdenyl complexes as type B catalyst.

Investigation of the Action of Type A
Catalysts in the Catalytic Mizture

The results of an investigation of the
use of many transition metal phosphine
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>100

Very high

0.007
0.012
0.002

1.2
1.9

0.3
23.8

Tr

41.1

78.7

0.7
13.3

20

80
80

1.17
1.19
Very high

8.8
12.9

48.2

0.5

39.5

18.1 47.2

23,45

> i00

0.015
0.032
0.005
0.130
0.115
0.032
0.040
0.025

Tr
37.4

76.2

1.2

15.7
27.1

Rh(PPh,);Cl

1.27
1.59
0.77
1.38
2.23
0.53
0.51

4.0
0.4

11.0

47.5

3,30

2:67 + 0.02 X 103 M

65

16.3 32.1

51.2

55

28.0 13.7 36.4 21.8
6.7

11.5
33.8

60
45

20.0 30.8

42.5

3,30

1.6
18.3

50.2 25.6 22.6

45.3

55

4.4 28.3 Tr 53.4

5.0

0,30
1,30

60

0.0

Tr 59.6

30.3

0.5
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a Catalyst B is MoOs(acac)s.
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complexes of rather different activity (3)
as catalyst A are reported in Table 3.

When the catalyst A is too active on its
Rh(PPh;);Cl or Ru(PPh,),Cl,

)y AvAI L X 13 3 4 Vi Avu & L A3 ) 3 g

own lego
B

OV %,

(17)] the total conversion is high but the
selectivity is low.

This trend was confirmed by increasing
the molar ratio of catalyst A to catalyst
B; in fact even in the case of Pt(PPh,),0,,
which is a catalyst of high selectivity, we
have a drop in selectivity when this ratio
approaches the value of six.

To sum up, a too effective action of
catalyst A in the autoxidation part of the
reaction may cause an evident loss of
selectivity as expected when the radical

doanmnngition of the mtermediste 2-pvelo-
GCCoImMIPOosItIon O1 il INLCrmedliaid &4-Cy G0

hexen-1-hydroperoxide occurs too easily.
One interesting point must be mentioned:
in the case of Rh(PPh;);Cl and MoO,
(acac), as catalysts the ratio of cyclo-
hexene oxide to 2-cyclohexen-1-ol after a
medium reaction time is much higher than
one (about two or more). This is a rather
unexpected resuit because it would support
a direct and seleetive epoxidation with
oxygen which has not been observed, for
instance, when either Rh(PPh,),Cl or

MoO,(acac), have been used separately.

LY. P 3t haa he ranorted that ]no
AVLUIUUVUl, 1¥ 1aS ofen 1CPULUULL viav u i

amount of epoxide formed is higher when
Ru(PPh;),Cl, is the only catalyst (17)
than when Rh (PPh;),Cl is used as the only
catalyst (3). In the case of our catalytic

mixtures we have observed a completely

opposite trend (see Table 3).

An anomalously high formation of the
epoxide has been observed in some other
cases in the initial stages of the reaction
(see, for instance, the case of the mixture
Pt(PPh,),0.-VO(acac), of Table 2); how-

ever, after a certain period the ratio of
to the ex-

nnnvn-]n tn alanhnl deerenced
ue

epoxide to alechol decreased
pected value of about one.

We have extended our investigation to
another class of catalysts of type A,
namely the metal acetylacetonates.

In Table 4 are reported the data cor-
responding to a series of different mixtures
of complexes. Once again we have lower

anlaotivitias with the moot active catalvets
SCICCUIVITICS Witil Wil INIGSL aCulVe Cataly sis.

In the case of the very active cobalt acetyl-

AND ZANDERIGHIL

acetonates we have also a very low useful
life of the catalytic mixture.

In the case of the catalytic mixture
Co(acac), (z = 2,3) + MoO,(acac), a ra-
tio of cyclohexene 0x1de to 2-cyclohexen-
1-0] higher than one was obtained. In-
terestingly this anomalous high value has
been always observed after a long reaction
time (Tables 3 and 4) suggesting a slow
formation in situ of a new and unknown
selective catalyst; moreover, the precipita-
tion of an insoluble brownish powder from
the reaction mixture is in agreement with
some transformation of the original metal
complexes.

We have also observed that the useful

o nf tho patalutin miviiuras ecan ha ann
ILL/ UL vy ua,ual‘y uiv LLIIAUULUD vall UC vuil=

led by adding a further amount of type
A complexes as soon as the catalytic ac-
tivity begins to decrease. In fact the addi-
tion of an additional amount of the catalyst
of type A (changing the value of the molar
ratio A to B from 1 to 2) reproduces the
initial value of the activity while the sys-
tem maintains the same selectivity (Table
5).
Thus the loss of activity with time can-
not be aseribed to the decomposition of the
molvbdenum part of the catalyst but rather

to that of tha antalyva
that of the Calairys

—

Stabilization of the Molybdenum Catalyst

A certain loss of selectivity has been ob-
served only after very long reaction times
(Table 5). This can be ascribed either to
an irreversible transformation of the
molybdenum catalyst or to the formation
of a stable complex of molybdenum with
some of the reaction produets (12, 13).

We have investigated the use of different
types of molybdenum complexes with the
aim of increasing and stabilizing the

prnnnrhoc of seleetive npnvnqnhnn of the

LUPCLUICS [siv i DY LAlGQuilil

catalytic mixture (Table 6). It was ob-
served that a higher selectivity can be
achieved by using a rather stable compiex
of molybdenum, e.g., MoO, (oxinate), [ox-
inateH is 8-hydroxyquinoline]. Slightly
lower selectivities were in fact obtained

when Mo (CO)4, Mo0O, (acac), or Mo,O;(sa-
lan)., have been used ran]nf\ ie the Schiff

1Cil o 1l Y UOCIL ST ST G S B SRR B A LV L2 $ 1 1 8 §

base of sahcylaldehyde with ethylenedi-
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amine]. The use of MoQ, (oxinate), to in-
crease the stability of the molybdenum
catalyst for olefin epoxidation with pre-
formed hydroperoxides has already been
reported (18).

Although we have not observed a real
increase of the useful life (which, as was
said above, is related only to the nature
and concentration of catalyst A), we have
obtained by the use of MoO, (oxinate), a
selectivity which is rather constant with
time, as would be expected when the
molybdenum catalyst maintains its proper-
ties during a long reaction time.

CONCLUSION

This investigation has shown that the
use of a homogeneous mixture of metal
complexes as oxidation catalyst can afford
a quite high selectivity for epoxide forma-
tion, at least in cyclohexene oxidation. The
selectivity is in faet much higher than in
the case of a simple thermal oxidation (14)
or of a simple metal ion catalyzed oxidation
(1-3).

We have limited our investigation to
catalytic systems obtained by mixing only
two different classes of complexes that we
have called class A (catalysts of autoxida-
tion) and class B (catalysts of selective
epoxidation). Moreover, we have limited
the choice of type A catalysts to two classes
of compounds (phosphine complexes of
noble metals and transition metal acetyl-
acetonates), although it is probable that
better or comparable results may be ob-
tained with other kinds of complexes (e.g.,
naphthenates of transition metals).

It appears that in our catalytic system
the two complexes act separately to give
rise to a stepwise mechanism of oxidation
where we have clearly two different steps
each corresponding to one well-defined
catalyst.

As a result of our investigation we sum-
marize below a few simple points which
may be useful for the formulation of other
similar complex mixtures of catalysts:

i. In order to obtain high selectivity for
a long reaction time, it is necessary to use
catalvsts of autoxidation (type A) of low
activity; of course this choice implies a

FUSI, UGO AND ZANDERIGHI

low total activity of the catalytic system.

ii. The use of molybdenum complexes as
type B catalyst produces high selectivities;
the complex MoO,(oxinate). is the most
effective.

iii. The molar ratio of catalyst A and B
affects not only the activity but also the
selectivity. The ratio must be about one
in the case of catalysts of medium activity;
lower values may give initially higher selec-
tivities but slightly higher ratios do not
produce either higher activities or selec-
tivities (see, for instance, Table 7). Usually
both activity and seleetivity become rather
constant and reproducible after a certain
reaction time. When the activity of cata-
lyst A is too high (see Table 4), as in the
case of Mn(acac); or Co(acac),, an excess
of catalyst A must be avoided. On the other
hand, when the catalyst A is of low activity
the ratio A to B may be more than 2 with-
out affecting too much the selectivity (see
Tables 3 and 4).

iv. Values of the ratio of cyclohexene
oxide to 2-cyclohexen-1-o1 much higher
than one have often been observed par-
ticularly with long reaction times. This
result cannot be explained simply by
assuming that the two homogeneous cata-
lysts act separately in a two-step process
first to produce the hydroperoxide (catalyst
A) and then to react it selectively with the
excess olefin (catalyst B). We cannot at
the moment propose any satisfactory ex-
planation of this departure from the two-
step process but we suggest a transforma-
tion of the initial metal complexes to form
in solution a more selective epoxidation
catalyst. However, we have been unable to
characterize and isolate it up to now. Evi-
dence for some transformation of the initial
complexes is the formation of insoluble
powders with the time and also the loss of
activity.

It is worthwhile to remember that this
result is not completely understood. It has
in fact been reported that, in propylene
oxidation catalyzed by different molyb-
denum complexes (15, 16) at relatively low
temperature, the selectivity for propylene
oxide is much higher than 50% which would
be the value expected if the two-step
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process was the only one involved in
epoxidation.
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